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Abstract. We study a class of games, in which the adversary (attacker)
is to satisfy a complex mission specified in linear temporal logic, and the
defender is to prevent the adversary from achieving its goal. A deceptive
defender can allocate decoys, in addition to defense actions, to create
disinformation for the attacker. Thus, we focus on the problem of jointly
synthesizing a decoy placement strategy and a deceptive defense strategy
that maximally exploits the incomplete information the attacker about
the decoy locations. We introduce a model of hypergames on graphs with
temporal logic objectives to capture such adversarial interactions with
asymmetric information. Using the hypergame model, we analyze the ef-
fectiveness of a given decoy placement, quantified by the set of deceptive
winning states where the defender can prevent the attacker from satis-
fying the attack objective given its incomplete information about decoy
locations. Then, we investigate how to place decoys to maximize the de-
fender’s deceptive winning region. Considering the large search space for
all possible decoy allocation strategies, we incorporate the idea of com-
positional synthesis from formal methods and show that the objective
function in the class of decoy allocation problem is monotone and non-
decreasing. We derive the sufficient conditions under which the objective
function for the decoy allocation problem is submodular, or supermod-
ular, respectively. We show a sub-optimal allocation can be efficiently
computed by iteratively composing the solutions of hypergames with a
subset of decoys and the solution of a hypergame given a single decoy.
We use a running example to illustrate the proposed method.

Keywords: Games on Graphs · Hypergames · Deception · Temporal
Logic

1 Introduction

In security and defense applications, deception plays a key role to mitigate the
information and strategic disadvantages of the defender against adversaries. In
this paper, we investigate the design of active defense with deception for a class
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of games on graphs, also known as ω-regular games [11,7,8]. A game in this
class captures the attack-defend sequential interaction in which the attacker is
to complete an attack mission specified in temporal logic [19] and the defender is
to mitigate attacks by selecting counter-actions and allocating decoys to create
a disinformation to the attacker. We are interested in the following question:
How to design the decoy allocation strategy so that the defender can influence
the attacker into taking (or not taking) certain actions that minimize the set
of attacker’s winning region? The winning region is defined as the set of game
states from which the attacker has a strategy to successfully complete its attack
mission irrespective of the defender’s counter-strategy.

Games on graphs with temporal logic objectives have been studied exten-
sively in the synthesis of reactive programs [7]. In a reactive program, the sys-
tem (player 1) is to synthesize a program (a finite-memory strategy) to provably
satisfy a desired behavior specification, no matter which actions are taken by the
uncontrollable environment (player 2). In these games, players’ payoffs are tem-
poral goals and constraints, described using linear temporal logic formulas and
a labeling function. A player receives a payoff equal to one if the labeling over
the outcome (state-sequence) of the game satisfies its temporal logic formula. In
our recent work [17], we have shown that a class of decoy-based deception can
be captured by assuming that the defender has the true labels of game states
but the attacker has incorrect labels. For example, a state labeled “unsafe” by
the defender may be mislabeled as “safe” for the attacker. By modeling the in-
teractions between the defender and the attacker as a hypergame, we developed
the solutions of subjective rationalizable strategies for both players in this class
of hypergames. The defender’s subjective rationalizable strategy is by nature
deceptive, as it ensures the security temporal logic specification to be satisfied
by exploiting the attacker’s misperception and mistakes in the attacker’s subjec-
tive rationalizable strategy. We introduced deceptive winning region as the set
of states (or finite game histories) from which the defender can ensure to satisfy
a security specification in this hypergame.

However, an important problem remains: How to control the attacker’s mis-
information in the labeling function so as to maximize the deceptive winning
region? To restrict the freedom in crafting the disinformation, we formulate a
class of decoy-based deception game: In this game, the defender can allocate a
subset of states as hidden decoys or “traps”, unknown to the attacker. Dur-
ing these interactions, the defender is to strategically select actions to lure the
attacker into the traps, whereas the attacker plays rationally to satisfy her tem-
poral logic objective given her subjective view of the interaction. In addition, the
defender strategy should be stealthy, in the sense that the attacker cannot realize
a misperception exists before getting caught by one of the traps. To determine
the decoy allocation, we employ the aforementioned solutions of hypergames
[17] to calculate the defender’s deceptive sure-winning region given each individ-
ual decoys. The selection of decoy locations is based on compositional synthesis
[10,18], which answers, given the two deceptive sure-winning regions for decoys
allocated at two different states s and s′, what is the deceptive sure-winning
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region when both states are allocated as decoys simultaneously? We derive the
sufficient conditions when the objective function for the decoy allocation problem
is submodular, or supermodular, respectively. Based on this, we can construct
an under-approximation of the deceptive sure-winning regions incrementally (in
polynomial time), instead of having to solve a combinatorially large number of
hypergames for all possible decoy configurations.

Related Work Decoy allocation, also called honeypot allocation and camouflage,
has been studied in recent years with applications to cyber- and physical secu-
rity problems. In [22,16], the authors propose a game-theoretic method to place
honeypots in a network so as to maximize the probability that the attacker at-
tacks a honeypot and not a real system. In their game formulation, the defender
decides where to insert honeypots in a network, and the attacker chooses one
server to attack and receives different payoffs when attacking a real system (pos-
itive reward) or a honeypot (zero reward). The game is imperfect information
as the real systems and honeypots are indistinguishable for the attacker. By
the solution of imperfect information games, the defender’s honeypot placement
strategy is solved to minimize the attacker’s rewards.

Security games [24,15] are another class of important models for resource
allocation in adversarial environments. In [25], the authors formulate a security
game (Stackelberg game) to allocate limited decoy resources in a cybernetwork
to mask network configurations from the attacker. This class of deception manip-
ulates the adversary’s perception of the payoffs and thus causes the adversary to
take (or not to take) certain actions that aid the objective of the defender. In [9],
the authors formulate an Markov decision process to assess the effectiveness of a
fixed honeypot allocation in an attack graph, which captures multi-stage lateral
movement attacks in a cybernetwork and dependencies between vulnerabilities
[13,21]. In [2], the authors analyze the honeypot allocation problem for attack
graphs using normal-form games, where the defender allocates honeypots that
changes the payoffs matrix of players. The optimal allocation strategy is deter-
mined using the minimax theorem. The attack graph is closely related to our
game on graph model, which generalizes the attack graph to attack-defend game
graphs [14,3] by incorporating the defender counter-actions in active defense.

There are several key distinctions between our work and the prior work.
First, our work focuses on a qualitative approach to decoy allocation instead of
a quantitative one, which often requires solving an optimization problem over a
well-defined reward/cost function. In the qualitative approach, we represent the
attacker’s goal using a linear temporal logic formula, which captures rich, qual-
itative behavioral objectives such as reachability, safety, recurrence, persistence
or a combination of these. Second, we show how to incorporate the attacker’s
misinformation about decoy locations into a ω-regular hypergame model by rep-
resenting it as labeling misperception. Hypergames [6,23,27] are a class of games
with asymmetric (one-sided incomplete) information in which different players
might play according to different perceptual games that capture the information
and higher-order information known to that player. While the underlying idea
behind our game model is similar to “indistinguishable honeypots” discussed
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in [22], we are able to leverage the solution approaches for hypergames to ad-
dress decoy allocation problem. Third, we solve for a stealthy strategy for the
defender, which ensures that defender’s actions will not inform the attacker that
deceptive tactics are being used. Lastly, we borrow the idea of compositional
reasoning from formal methods to find approximately optimal solutions for the
decoy allocation problem for this class of hypergames.

The paper is structured as follows. In Sec. 2, we discuss the preliminaries of
attack-defend game on graph model and define the problem statement. In Sec. 3,
we present the main results of this paper including an algorithm for the decoy
allocation based on the ideas of deceptive synthesis and compositional synthesis.
We employ a running example to provide intuition and illustrate the correctness
as well as (near-)optimality of the proposed algorithm. Sec. 4 concludes the paper
and discusses the future directions.

2 Problem Formulation

2.1 Attack-Defend Games on Graph

In a zero-sum two-player game on graph, player 1 (P1, pronoun ‘he’) plays against
player 2 (P2, pronoun ‘she’) to satisfy a given temporal logic formula. Formally, a
game on graph consists of a tuple G = 〈G,ϕ〉, where G is a game arena modeling
the dynamics of the interaction between P1 and P2, and ϕ is the temporal logic
specification of P1. As the game is zero-sum, the temporal logic specification of
P2 is ¬ϕ, that is, the negation of P1’s specification.

Definition 1 (Game Arena). A two-player turn-based, deterministic game
arena between P1 and P2 is a tuple

G = 〈S,Act, T,AP,L〉,

where

– S = S1 ∪ S2 is a finite set of states partitioned into two sets S1 and S2. At
a state in S1, P1 chooses an action. At a state in S2, P2 selects an action;

– Act = Act1∪Act2 is the set of actions. Act1 (resp., Act2) is the set of actions
for P1 (resp., P2);

– T : (S1×Act1)∪ (S2×Act2)→ S is a deterministic transition function that
maps a state-action pair to a next state;

– AP is a set of atomic propositions;
– L : S → 2AP is the labeling function that maps each state s ∈ S to a set
L(s) ⊆ AP of atomic propositions that evaluate to true at that state.

A run in G is a (finite/infinite) ordered sequence of states ρ = (s0, s1, . . .)
such that for any i > 0, si = T (si−1, a) for some a ∈ Act. Given the labeling
function L, every run ρ in G can be mapped to a word over an alphabet Σ = 2AP

as w = L(ρ) = L(s0)L(s1) . . ..



Decoy Allocation Games on Graphs with Temporal Logic Objectives 5

In this paper, we use Linear Temporal Logic (LTL) [19] to define the objec-
tives of P1 and P2. Formally, an LTL formula is defined as

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | ϕUϕ | ϕWϕ

where p ∈ AP is an atomic proposition, ¬ (negation), ∧ (and), and ∨ (or)
are Boolean operators, and © (next), U (strong until) and W (weak until) are
temporal operators. Formula ©ϕ means that the formula ϕ will be true in the
next state. Formula ϕ1Uϕ2 means that ϕ2 will be true in some future time
step, and before that ϕ1 holds true for every time step. Formula ϕ1Wϕ2 means
that ϕ1 holds true until ϕ2 is true, but does not require that ϕ2 becomes true.
We define two additional temporal operators: ♦ (eventually) and � (always) as
follows: ♦ϕ = >Uϕ and �ϕ = ¬♦¬ϕ.

Given a word w ∈ Σω, let w[i] be the i-th element in the word and w[i . . .]
be the subsequence of w starting from the i-th element. For example, for a word
w = abc, w[0] = a and w[1 . . .] = bc. We write w |= ϕ if the word w satisfies the
temporal logic formula ϕ. The semantics of LTL are defined as follows.

– w |= p if p ∈ w[0];
– w |= ¬ϕ if w 6|= ϕ;
– w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2;
– w |=©ϕ if w[1 . . .] |= ϕ;
– w |= ϕUψ if ∃i ≥ 0, w[i . . .] |= ψ and ∀0 ≤ j < i, w[j . . .] |= ϕ.
– w |= ϕWψ if either w |= ϕUψ or ∀0 ≤ j, w[j . . .] |= ϕ.

A subclass of LTL formula, called syntactically cosafe LTL (scLTL), does
not include the weak until operator W and allows the negation operator ¬ to
only occur before an atomic proposition. An scLTL formula can be equivalently
represented by a finite-state deterministic automaton with regular acceptance
conditions, defined as follows.

Definition 2 (Specification DFA). Given an scLTL formula ϕ, its corre-
sponding specification Deterministic Finite Automaton (DFA) is a tuple

A = 〈Q,Σ, δ, ι,QF 〉,

which includes a finite set Q of states, a finite set Σ = 2AP of symbols, a
deterministic transition function δ : Q × Σ → Q, a unique initial state ι ∈ Q,
and a set QF ⊆ Q of final states.

The transition function is recursively extended as δ(q, aw) = δ(δ(q, a), w) for
given a ∈ Σ and w ∈ Σ∗, where Σ∗ is the set of all finite words (also known
as the Kleene closure of Σ). A word w is accepted by the DFA if and only if
δ(q, u) ∈ QF and u is a prefix of w, i.e., w = uv for u ∈ Σ∗ and v ∈ Σω, where
Σω is the set of all infinite words defined over Σ. A word is accepted by the
specification DFA A if and only if it satisfies the LTL formula ϕ.

Putting together the game arena G and the scLTL objective ϕ of P1, we can
formally define a graphical model for the zero-sum game G.
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Definition 3 (Product game). Let G = 〈S,Act, T,AP,L〉 be a game arena
and let A = 〈Q,Σ, δ, ι, QF 〉 be the specification DFA given the LTL formula ϕ.
Then, the product game G = G⊗A is the tuple,

G = 〈S ×Q,Act,∆, F 〉,

where

– S ×Q is a set of states partitioned into P1’s states S1 ×Q and P2’s states
S2 ×Q.

– ∆ : (S1×Q×Act1)∪ (S2×Q×Act2)→ S×Q is a deterministic transition
function that maps a game state (s, q) ∈ S ×Q and an action a ∈ Act to a
next state (s′, q′) ∈ S ×Q such that s′ = T (s, a) and q′ = δ(q, L(s′));

– F = S ×QF is the set of final states in G.

It is noted that we did not include an initial state in the definition of the
game arena. This is because any state in S can be selected to be the initial
state. Let s0 ∈ S be the initial state of the game arena, the corresponding
initial state in the product game is q0 = δ(ι, L(s0)). By construction, for each
run ρ = (s0, s1, . . .) in G, there is a unique run ρ̂ = (s0, q0), (s1, q1), . . . in the
product game, where q0 = δ(ι, L(s0)) for i = 0 and qi = δ(qi−1, L(si)) for i ≥ 1.
The run ρ satisfies the scLTL formula ϕ if and only if L(ρ) |= ϕ and as a result
of construction, there exists (si, qi) ∈ ρ̂ for some i ≥ 0 such that (si, qi) ∈ F .
Thus, P1’s objective of satisfying an scLTL specification over the game arena G
is reduced to that of reaching one of the final states F in product game G. In
the zero-sum game, P2’s objective of satisfying ¬ϕ is reduced to preventing P1
from reaching any final states in F .

A memoryless, randomized strategy for i-th player, for i ∈ {1, 2}, is a function
πi : Si × Q → D(Acti), where D(Acti) is the set of discrete probability distri-
butions over Acti. It is noted that a memoryless strategy in a product game is
a finite-memory strategy in game arena. A strategy is deterministic if πi(ρ) is
a Dirac delta function. We say that player i commits to (or follows) a strategy
πi if and only if for a given state (s, q), if πi(s, q) is defined, then an action is
sampled from the distribution πi(s, q), otherwise, player i selects an action at
random. Let Πi be the set of memoryless strategies of player i in the product
game.

A strategy π1 ∈ Π1 is said to be sure-winning for P1 if, for every P2’s strategy
π2 ∈ Π2, P1 can ensure to reach F in finitely many steps. A strategy π2 ∈ Π2 is
sure-winning for P2 if for every P1’s strategy π1 ∈ Π1, P2 can ensure the game
to stay in (S ×Q) \ F for infinitely many steps. The product game is known to
be determined [11,20]. That is, at any state (s, q), only one of the players has a
winning strategy and the winning strategy is memoryless.

The set of states in the product game G from which P1 (resp. P2) has a sure-
winning strategy are called the sure-winning region for P1 (resp. P2), denoted as
Win1 (resp. Win2). Players’ sure-winning regions can be computed by using the
Alg. 1 by letting Si ×Q to be Vi, Acti to be Ai, the transition function ∆ and
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Algorithm 1: Sure-Win: Compute Player’s Sure-Winning Regions of
Zero-Sum Product Games with Reachability Objective [20,11].

Input: A reachability game 〈V = V1 ∪ V2, A1 ∪A2,∆, F 〉 where Vi are states
where player i takes an action, Ai are player i’s actions,
∆ : V ×A→ V and P1’s goal is to reach the set F and P2’s goal is to
stay within V \ F .

Output: The winning regions Win1 and Win2 for P1 and P2.
Z0 ← F , Z1 ← ∅, k ← 0;
while Zk+1 6= Zk do

Pre1(Zk)← {v ∈ V1 | ∃a ∈ A1 s.t. ∆(v, a) ∈ Zk};
Pre2(Zk)← {v ∈ V2 | ∀b ∈ A2 s.t. ∆(v, b) ∈ Zk};
Zk+1 ← Zk ∪ Pre1(Zk) ∪ Pre2(Zk);
k ← k + 1;

end
Win1 ← Zk, Win2 ← (V1 ∪ V2) \Win1;
return Win1,Win2.

F are the same components in G. The interested readers are referred to Chap 2
of [11] for more details.

The sure-winning strategy is defined for P1 as follows: Let Z1, Z2, . . . Zk be
the sequence of sets generated by Alg. 1, for a state v ∈ (Zi \ Zi−1) ∩ V1, let
a be the action that ∆(v, a) ∈ Zi−1, then π1(v) = a (by construction, such an
action a exists). P2’s sure-winning strategy is constructed as: For each v ∈Win2,
π2(v) = a such that ∆(v, a) ∈Win2. Clearly, there may exist more than one sure-
winning strategies for each player.

2.2 Formulating the Decoy Allocation Problem

We consider an interaction between the defender (P1, pronoun ‘he’) and the
attacker (P2, pronoun ‘she’) in which the defender can use decoys to introduce
incorrect information to the attacker about the game. Our goal is to investigate
how to create the attacker’s misinformation by allocating the decoys so as to
minimize the size of the sure-winning region of the attacker.

We now formalize the problem of decoy allocation using the game arena
(Def.1). Let decoy be an atomic proposition that evaluates to true at a state if
the state is equipped with a decoy.

Assumption 1. In P2’s knowledge of the game arena, no state is labeled as
decoy, i.e., decoy /∈ L(s) for all s ∈ S.

Assumption 1 captures one important function of decoys—concealing fictions
[12]. The idea behind concealing fictions is that P1 simulates the decoy states to
function like a real system. As a result, P1 and P2 play with different subjective
views of their interaction. With this in mind, we formalize the notion of perceptual
game arena of the players to characterize these subjective views.
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Perceptual Game Arena. Given that P2 does not know about the decoys, we
distinguish between her view of the game arena from P1’s view by introducing a
different labeling function for P2. Let P1’s perceptual game arena be G1 = G =
〈S,Act, T,AP,L〉. That is, P1 knows the ground truth. And, let P2’s perceptual
game arena be G2 = 〈S,Act, T,AP,L2〉 such that for any s ∈ S, we have L2(s) =
L(s) \ {decoy}. In other words, if a state is not a decoy, then P1 and P2 share
the same label for that state. If it is a decoy, then P1 knows that the proposition
decoy evaluates to true at that state, but P2 does not.

The Attacker and Defender Temporal Logic Objectives. Over the perceptual
game arenas G and G2, P1 and P2 aim to satisfy their LTL objectives. We con-
sider that P2’s objective is specified by an scLTL formula ϕ2, whose specification
DFA is A2 = 〈Q,Σ, δ2, ι, QF 〉.

Given P2’s perceptual game arena G2 and the specfication DFA A2, we can
construct a perceptual product game of P2 as G2 = G2⊗A2. P1’s objective is an
LTL formula ¬ϕ2W decoy. That is, P1 satisfies the goal by preventing P2 from
satisfying ϕ2 before reaching a decoy. However, reaching a decoy is not necessary
due to the semantics of the “weak until” operator.

Example 2 (Part 1). Consider a game arena as shown in Fig. 1a consisting of
15 states. At a circle state, P1 takes an action, and at a square state, P2 takes
an action. As the actions are deterministic, we use edges to indicate players’
actions. For example, (c, f), (c, g), (c, h) are possible actions for P2 at the state
c. Over this game arena, P2 wants to satisfy an scLTL specification ϕ2 = ♦ (n∨
o) ∧ (f =⇒ ♦n) ∧ (g =⇒ ♦ o), which, in words, means that P2 must reach
either the state n or o with the condition that whenever she visits the state f ,
she must visit n and whenever she visits g, she must visit o. If she does not
visit either f or g, then she can visit either n or o to successfully complete her
objective. The DFA equivalent to ϕ2 is shown in Fig. 2a.

Suppose that P1 allocates the states D = {h, k} as decoys. The perceptual
game arenas of P1 and P2 under decoy allocation D are now different. P1’s per-
ceptual game arena in Fig. 1b has the same underlying graph as the perceptual
game arena of P2 shown in Fig. 1a but P1 has the knowledge of where the decoys
are placed. We have decoy ∈ L(h) and decoy ∈ L(k) but decoy /∈ L(s) for any
state s except s = h, k. Figure 2b shows the perceptual product games of P2. A
transition (c, 0) → (f, 1) is based on the transition c → f and δ2(0, L(f)) = 1
in the DFA A2 (shown in Fig. 2a). We omit all nodes that do not have a path
leading to (n, 3) or (o, 3).

We now formalize our problem statement.

Problem 1. Given a set of k decoys and a set D ⊆ S of states at which decoys can
be placed, identify the decoy locations D ⊆ D with |D| ≤ k such that by letting
decoy ∈ L(s) for each s ∈ D, the number of states in the product game G1 from
which P1 has a strategy to satisfy the security specification ϕ1 is maximized,
given that P2 may choose any counter-strategy that she considers rational in
her perceptual game, G2.
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(a) Perceptual Game Arena of P2
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f g h i

j k l m
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(b) Perceptual Game Arena of P2
(Ground-Truth)

Fig. 1: Perceptual Game Arenas of P1 and P2 in Ex. 2.

The objective of P1 is intuitively understood as to maximize the set of system
states protected by the defense strategy.

3 Main Result

Our proposed solution to Problem 1 is based upon two key ideas from formal
methods and hypergame theory, namely (a) deceptive synthesis, and (b) com-
positional synthesis. In Sec. 3.1, we introduce deceptive synthesis to construct
a strategy for P1 to deceive P2 into reaching a pre-defined decoy set in finitely
many steps by exploiting the incomplete information of P2. The strategy is
called deceptive sure-winning strategy and depends on the chosen set of decoys.
Then, in Sec. 3.2, we introduce a compositional synthesis approach to identify
an approximately optimal allocation of decoys.

3.1 Deceptive Synthesis: Hypergames on Graphs

Consider a set D ⊆ S of states are allocated with decoys, unknown to P2. In such
an interaction, as seen in Sec. 2.2, the players have different perceptual game
arenas that share the same set of states, actions, and transitions but different
labeling functions. We introduce a model of hypergame on graph to integrate
the games G1 of P1 and G2 of P2 into a single graphical model.

Definition 4 (Hypergame on Graph (modified from [17]3)). Given the
perceptual game arenas G = 〈S,Act, T,AP,L〉 and G2 = 〈S,Act, T,AP,L2〉,
3 Def. 4 is a simplified version of [17, Def. 6], which considers the general case when P1

and P2’s objectives are both general scLTL formulas, not necessarily in the current
form.
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(a) Specification DFA for ϕ2

(a, 0) (b, 0) (c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1) (k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

(b) Perceptual Product Game of P2

Fig. 2: P2’s specification DFA and the perceptual product game in Ex. 2.

and P2’s specification DFA A2 = 〈Q, 2AP , δ2, ι, QF 〉, let D ( S be a set of states
such that decoy ∈ L(s). The hypergame on graph given the players’ objectives
¬ϕ2W decoy for P1 and ϕ2 for P2 is a transition system

HD = 〈S ×Q,Act,∆, FD, F2〉,

where

– S ×Q is the set of states;

– ∆ : (S1×Q×Act1)∪ (S2×Q×Act2)→ S×Q is a deterministic transition
function such that ∆((s, q), a) = (s′, q′) if and only if s′ = T (s, a) and q′ =
δ2(q, L2(s′));

– FD = {(s, q) | decoy ∈ L(s)} is the set of states which P1 must reach in
order to satisfy ¬ϕ2W decoy;

– F2 = {(s, q) | q ∈ QF } is the set of final states which P2 must reach in order
to satisfy ϕ2.

It is noted that the sets of states, actions, transitions, and P2’s final states F2

in HD are defined exactly as these components in P2’s perceptual product game
G2 (see Def. 3). The additional set FD is introduced to represent P1’s objective.

Let us denote the sure-winning region of player i in player j’s perceptual game
Gj by Winji . The attacker’s perceptual winning regions can be solved with the
attacker’s reachability game using Alg. 1 by letting V1 := S2 ×Q, V2 := S1 ×Q,
A1 := Act2, A2 := Act1, ∆ is the same as in HD, and F := F2. The following
observations are noted:

– For every state (s, q) ∈Win21 (P1’s sure-winning region perceived by P2), P1
can ensure to satisfy ¬ϕ2 no matter which strategy P2 uses. Decoys are not
needed for states within Win21.
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– For every state (s, q) ∈Win22 (P2’s sure-winning region perceived by P2), P2
can ensure satisfying ϕ2 when no decoy is used. However, when decoys are
introduced, P1 can exploit P2’s lack of knowledge about the decoys and lure
P2 into reaching decoys before P2 is able to satisfy ϕ2.

It is known [5] that we can rewrite ¬ϕ2W decoy using the temporal operators:
U (until) and � (always), as (¬ϕ2U decoy)∨�¬ϕ2, where �ϕ = ¬♦¬ϕ. When
the game state is within P2’s perceptual winning region Win22, then P1 does
not have a strategy to ensure �¬ϕ2 (reads “always ϕ2 is false”) and can only
satisfy his specification by enforcing P2 to visit a decoy. The following Lemma
formalizes this statement.

Lemma 1. For any state (s, q) ∈ Win22, any strategy π1 of P1 that satisfies
¬ϕ2W decoy also satisfies ¬ϕ2U decoy.

We omit the proof noting that it follows from the definition of weak until
and the property of winning region.

Thus, when we focus our attention on the region Win22, P1’s objective is
equivalently ¬ϕ2U decoy. Before addressing the decoy allocation problem, we
must answer: From which states in Win22, P1 can ensure to satisfy ¬ϕ2U decoy

by exploiting P2’s lack of knowledge about the decoy states, i.e., FD?
To answer this question, we formulate a deceptive game for P1. We first

restrict P1’s actions to those considered rational for P2 in her perceptual game.
At the same time, P2’s irrational actions are removed as P1 knows a rational P2
will not use these actions. As the rational actions are based on P2’s subjective
view of the game, we formalize this notion of rationality using the concept of
subjective rationalizability from game theory (we refer the interested readers to
[17] for rigorous treatment).

Definition 5 (Subjectively Rationalizable Actions in G2). Given P2’s
perceptual product game G2 = 〈S × Q,Act,∆, F2〉, a player i’s action a ∈ Acti
is said to be subjectively rationalizable at his/her winning state (s, q) ∈Win2i in
G2 if and only if ∆((s, q), a) ∈Win2i . At player i’s losing state (s, q) /∈Win2i , any
action of player i is assumed to be subjectively rationalizable for player i.

Based on Def. 5, we define the set of subjectively rationalizable actions of
player i at a state (s, q) ∈ S ×Q as follows:

SRActs2i (s, q) ={a ∈ Acti | (s, q) ∈Win2i and ∆((s, q), a) ∈Win2i } ∪
{a ∈ Acti | (s, q) /∈Win2i and ∆((s, q), a) is defined} (1)

Assumption 2. Subjective rationalizability is a common knowledge between P1
and P2.

Assumption 2 means that both players know that their opponent is sub-
jectively rational and that the opponent is aware of this fact. Thus, P2 would
become aware of her misperception in the game arena, when P1 uses an action
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which is not subjectively rationalizable in P2’s perceptual game, G2. We can
refine the hypergame on graph HD to eliminate: 1) states that do not require
decoys: This is the set Win21 from which P1 has a sure-winning strategy for ¬ϕ2;
2) actions that contradict P2’s perception. After this elimination, we obtain a
deceptive reachability game for P1, for synthesizing P1’s deceptive strategy.

Definition 6 (P1’s deceptive reachability game). Given the hypergame on
graph HD = 〈S ×Q,Act,∆, FD, F2〉, P1’s deceptive reachability game is

ĤD = 〈Win22, Act, ∆̂, FD〉,

where

– Win22 is a set of P2’s perceptual winning states, and game state space for
P1’s deceptive reachability game.

– ∆̂ : S ×Q×Act→ S ×Q is a deterministic transition function such that
• if (s, q) /∈ F2 then ∆̂((s, q), a) = ∆((s, q), a) whenever s ∈ Si and a ∈
SRActs2i (s, q) for i = 1, 2. Otherwise, ∆̂((s, q), a) is undefined.

• if (s, q) ∈ F2, then for any action a ∈ Act, ∆̂((s, q), a) = (s, q). That is,
the set F2 are modified into sink states.

– FD is the set of states that P1 aims to reach.

Lemma 2. For a given state (s, q), if P1 has a sure-winning strategy in ĤD

starting from (s, q), then P1 can ensure to satisfy ¬ϕ2U decoy by following this

sure-winning strategy in ĤD.

Proof. A path satisfies ¬ϕ2U decoy if it reaches FD and before reaching FD, it
does not visit any state in F2. By construction of ĤD, if any path reaches FD,
it must not have visited F2 because if F2 is reached prior to FD, then the game
stays in the sink state and will never reach FD. Thus, P1’s sure-winning strategy
that ensures a path to reach FD alone satisfies ¬ϕ2U decoy.

Formally, P1’s sure-winning strategy π1 in the deceptive reachability game
is said to be deceptively sure winning. A state from which P1 has a deceptive
sure-winning strategy is called a deceptively sure-winning state. The set of all
deceptively sure-winning states of P1 in ĤD is called P1’s deceptive sure-winning
region. The deceptive sure-winning region for P1 can be computed by using Alg. 1
with ĤD by letting V1 := (S1 ×Q) ∩Win22, V2 := (S2 ×Q) ∩Win22, ∆ := ∆̂, and
F := FD (see the description of terms in Alg. 1). We denote the deceptive sure-
winning region for P1 as DSWinD.

It is noted that the deception is induced by the set FD which is hidden from
P2, and the fact that during the interaction, P1 does not choose any action
that contradicts P2’s misperception. Additionally, we note that deceptive sure-
winning region is not defined for P2, as she is unaware of her lack of information
until a decoy is reached.

We now continue with the running example to illustrate the hypergame and
P1’s deceptive reachability game.



Decoy Allocation Games on Graphs with Temporal Logic Objectives 13

Example 2 (Part 3). From Def. 4, we note that the hypergame on graph HD

shares the same underlying graph as P2’s perceptual game, G2. That is, in our
example,HD would have the same graph as Fig. 2b but has the states (h, 0), (k, 1)
and (k, 2) labeled as the sink states (shown in red). Now, let us understand the

construction of ĤD from HD. We start by computing Win22 using Alg. 1 over the
model G2 by letting V1 := S2×Q,V2 := S1×Q,∆ := ∆ and F := F2. This results
in Win22 to include all states except (a, 0), (b, 0). Intuitively, at the state (b, 0), P1
can always choose the transition b → a to reach (a, 0) and keep the game state
within {(a, 0), (b, 0)}. Consequently, any action that leads to (a, 0), (b, 0) is not
subjectively rationalizable for P2 and thereby removed. Additionally, the states
(a, 0) and (b, 0) are also removed from HD to get ĤD, which is shown in Fig. 3.

(c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1)

(k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

Fig. 3: P1’s deceptive reachability game.

3.2 Compositional Synthesis for Decoy Allocation

Given a subset D ⊆ S of states that can be allocated as decoys, for every different
choice of decoy allocation D ⊆ D we have a different hypergame, ĤD. In this
context, solving Problem 1 is equivalent to identifying one hypergame that has
the largest deceptive sure-winning region |DSWinD| for P1. A näıve approach
to solve this problem would be to compute DSWinD for each D ⊆ D and then
select a set D for which |DSWinD| is the largest. However, this approach is
not scalable because the number of subsets increases combinatorially with the
size of game. To address this issue, we introduce a compositional approach to
decoy allocation in which we show that when certain conditions hold, the decoy
allocation problem can be formulated as a sub or supermodular optimization
problem. We propose an algorithm to approximate the optimal decoy allocation.

Proposition 1. Let DSWin{s1} and DSWin{s2} be P1’s deceptive sure-winning

regions in the hypergames Ĥ{s1} and Ĥ{s2} respectively. Then, P1’s deceptive
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sure-winning region DSWin{s1,s2} in the reachability game Ĥ{s1,s2} is equal to
the sure-winning region for P1 in the following zero-sum, reachability game:

Ĥ{s1,s2} = 〈Win22, Act, ∆̂,DSWin{s1} ∪ DSWin{s2}〉,

where P1’s goal is to reach the target set DSWin{s1} ∪ DSWin{s2} and P2’s goal
is to prevent P1 from reaching the target set.

Proof. First, it is noted that all the three deceptive reachability games: Ĥ{s1},
Ĥ{s2} and Ĥ{s1,s2}, share the same underlying graphs but different reachability
objectives for P1: F{s1}, F{s2}, and F{s1,s2}. In addition, F{s1}∪F{s2} = F{s1,s2}.
By definition of sure-winning regions, from every state (s, q) ∈ DSWin{si} for i =
1, 2, there exists a deceptive sure-winning strategy π∗{si} for P1 to ensure F{si}
is reached in finitely many steps, for any subjectively rationalizable counter-
strategy of P2.

In Ĥ{s1,s2}, let W ∗ ⊆Win22 be the sure-winning region for P1 and π∗ be the
sure-winning strategy of P1. From a state (s, q) in W ∗, P1 can ensure to reach
a state, say (s′, q′) ∈ DSWin{s1} ∪ DSWin{s2} by following π∗. Upon reaching a
state (s′, q′), P1 can ensure to reach a state in either F{s1} or F{s2}—that is,
P1 can ensure to reach a state in F{s1,s2}. Hence, a sure-winning state (s, q)

in the above reachability game is deceptive sure-winning in Ĥ{s1,s2} in which
F{s1,s2} is P1’s reachability objective. The deceptive sure-winning strategy is
sequentially composed of strategies π∗, π∗{s1}, and π∗{s1} as follows: From a state

(s, q) ∈ W ∗, P1 uses π∗ until a state in DSWin{s1} ∪ DSWin{s2} is reached. If
DSWin{s1} \ DSWin{s2} is reached, P1 uses the sure-winning strategy π∗{s1}; If

DSWin{s2} \ DSWin{s1} is reached, P1 uses the sure-winning stratgy π∗{s2}; if
DSWin{s1} ∩ DSWin{s2}, P1 selects one of π∗{s1} and π∗{s2} arbitrarily.

Prop. 1 provides us a way for composing the deceptive sure-winning regions
of two deceptive reachability games Ĥs1 and Ĥs2 to compute the deceptive sure-

winning region in the deceptive reachability game Ĥ{s1,s2} where both s1 and
s2 are allocated as decoys. A more general result can be obtained by applying
Prop. 1 repeatedly.

Corollary 1. Given DSWinD and DSWin{s} as P1’s deceptive sure-winning re-

gions in hypergames ĤD and Ĥ{s} respectively, P1’s deceptive sure-winning re-

gion DSWinD∪{s} in the deceptive reachability game ĤD∪{s} equals the sure-
winning region for P1 in the following zero-sum, reachability game:

〈Win22, Act, ∆̂,DSWinD ∪ DSWin{s}〉

where P1’s goal is to reach the target set DSWinD ∪ DSWin{s} and P2’s goal is
to prevent P1 from reaching the target set.

Corollary 2. Given a set D ⊆ D and a state s ∈ D, we have

DSWinD ∪ DSWin{s} ⊆ DSWinD∪{s}
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Corollary 2 follows immediately from Proposition 1 and Alg. 1. To see this,
consider a P1 state s ∈ D which is neither in DSWinD nor in DSWin{s} but
has exactly two transitions: one leading to s and another leading to a state
in DSWinD. Clearly, the new state will be added to DSWinD∪{s}. Thus, if we
consider the size of DSWinD to be a measure of effectiveness of allocating the
states in D ⊆ D as decoys, then Corollary 2 states that the effectiveness of
adding a new state to a set of decoys is greater than or equal to the sum of their
individual effectiveness.

Example 2 (Part 4). Given the underlying graph of P1’s reachability game ĤD

from Fig. 3, let us observe the effect of choosing different D on P1’s deceptive
sure-winning region, DSWinD. Letting k = 2, Fig. 4 shows the DSWinD for
D = {h, k} (Fig. 4a) and D = {l,m} (Fig. 4b). In the figure, the colored states
represent P1’s deceptive sure-winning region, DSWinD. The states in FD are
colored red and the states from which P1 has deceptive sure-winning strategy to
reach a state in FD are colored blue. For instance, forD = {h, k}, a P1 state (f, 1)
is included in F{h,k} because there exists an action for P1 that leads to (k, 1),
which is in F{h,k}. Similarly, a P2 state (d, 0) is included in DSWin{h,k} because
both the outgoing transitions from (d, 0) lead to a deceptively sure-winning state.
We also notice that the states (c, 0) and (d, 0) from DSWin{h,k} are not included
in either DSWin{h} = {(h, 0)} or DSWin{k} = {(k, 1), (k, 2), (f, 1), (g, 2)} because
both the states have at least one transition that does not lead to deceptive sure-
winning state. For instance, the transition (d, 0)→ (g, 2) prevents the state (d, 0)
to be added to DSWinh.

(c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1)

(k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

(a) Deceptive sure-winning region of P1
when D = {h, k}

(c, 0) (d, 0) (e, 0)

(f, 1) (g, 2) (h, 0) (i, 0)

(j, 1)

(k, 1) (k, 2) (l, 0) (m, 0)

(n, 3) (o, 3)

(b) Deceptive sure-winning region of P1
when D = {l,m}

Fig. 4: Deceptive sure-winning region of P1 under different choice of D.

We now define a composition operator
⊎

over deceptive sure-winning regions
which represent the true effect of adding a new state to a given set of decoys.
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That is, given D ⊆ D and s ∈ D, let
⊎

be an operator such that

DSWinD
⊎

DSWin{s} = DSWinD∪{s}.

That is, the composition operator returns the deceptive sure-winning region in
the reachability game 〈Win22, Act, ∆̂,DSWinD ∪ DSWin{s}〉, which equals P1’s
deceptive sure-winning region when the set D ∪ {s} are selected to be decoys.

With this notation, Problem 1 becomes equivalent to identifying a setD∗ ⊆ D
such that

D∗ = arg max
D⊆D

∣∣∣∣∣ ⊎
s∈D

DSWin{s}

∣∣∣∣∣ subject to: |D| ≤ k. (2)

It is noted that if we replace the composition operator
⊎

with the union
operator ∪ in (2), then the problem becomes

max
D⊆D

∣∣∣∣∣ ⋃
s∈D

DSWin{s}

∣∣∣∣∣ subject to: |D| ≤ k. (3)

which is a maximum set-cover problem. The maximum set-cover problem is
well-known submodular optimization problem and can be solved using a greedy
algorithm: Given the current choice Di of decoys at iteration i, the greedy al-
gorithm selects a new decoy s ∈ D \ Di that covers the greatest number of
uncovered states in Win22. This selection iterates until k decoys are selected. It
is also known that the greedy algorithm is (1− 1/e)-approximate. The reader is
referred to [26] for more details.

Let f∪(D) =

∣∣∣∣ ⋃
s∈D

DSWin{s}

∣∣∣∣ and f](D) =

∣∣∣∣ ⊎
s∈D

DSWin{s}

∣∣∣∣. It follows from

Corollary 2 that f∪(D) ≤ f](D) for all D ⊆ D. In other words, f∪(D) under-
approximates the effectiveness of allocating the states in D as decoys, which is
captured by f](D).

While the function f∪ is submodular, a similar sub/supermodularity con-
dition does not necessarily hold for the function f]. In the sequel, we provide
sufficient conditions on when f] is submodular and when it is supermodular.

Theorem 1. The following statements about f](D) =

∣∣∣∣ ⊎
s∈D

DSWin{s}

∣∣∣∣ are true.

(a) f] is monotone and non-decreasing.

(b) f] is submodular if DSWinD∪{s} = DSWinD ∪ DSWin{s} for all D ⊆ D and
s ∈ D.

(c) f] is supermodular if DSWinD = DSWinD∪{s1}∩DSWinD∪{s2} for all D ⊆ D
and all s1, s2,∈ D.



Decoy Allocation Games on Graphs with Temporal Logic Objectives 17

Proof. (a). Based on Corollary 2, for any set D ⊆ D and a state s ∈ D \ D,
f](D) = |DSWinD| and f](D ∪ {s}) = |DSWinD∪{s}|, because DSWinD ⊆
DSWinD∪{s}, f

](D) ≤ f](D ∪ {s}).
(b). When DSWinD∪{s} = DSWinD ∪ DSWin{s}, we can write f](D) =∣∣∣∣ ⊎

s∈D
DSWin{s}

∣∣∣∣ =

∣∣∣∣ ⋃
s∈D

DSWin{s}

∣∣∣∣ = f∪(D), which is submodular.

(c). We will show that

LHS := f](D ∪ {s1}) + f](D ∪ {s2})− f](D) ≤ f](D ∪ {s1, s2}) := RHS

for all D ⊆ D and all s1, s2 ∈ D. Given that DSWinD = DSWinD∪{s1} ∩
DSWinD∪{s2} holds for any D ⊆ D and any s1, s2 ∈ D, we have that f](D ∪
{s1})+f](D∪{s2})−f](D) counts every state in DSWinD∪{s1}∪DSWinD∪{s2}
exactly once. On the other hand, we have f](D ∪ {s1, s2}) = |DSWinD∪{s1,s2}|
and DSWinD∪{s1,s2} ⊇ DSWinD∪{s1}∪DSWinD∪{s2}, by Corollary 2. Thus, there
may exist a state in DSWinD∪{s1,s2} which is not included in either DSWinD∪{s1}
or DSWinD∪{s2}. In other words, RHS may be greater than or equal to LHS and
the statement follows.

Based on Thm. 1, we now propose a greedy algorithm described in Alg. 2.
This greedy algorithm is an extension of the GreedyMax algorithm for maxi-
mizing monotone submodular-supermodular functions in [4]. It starts with an
empty set of states labeled with decoy and incrementally adds new decoys in
the the game arena. At each step, given the deceptive winning region of the
chosen decoys, a new decoy is selected such that by adding the new decoy into
the chosen decoys, P1’s deceptive sure-winning region covers the largest number
of states in Win22. The algorithm iterates until k decoys are added, where k is
the upper bound on the number of decoys.

Algorithm 2: GreedyMax Algorithm for Decoy Allocation

Input: P1’s deceptive reachability game 〈Win22, Act, ∆̂, FD = ∅〉, the set
D ⊆ S, the bound k on the number of decoys.

Output: An approximate solution D for the optimization problem in Eq. 2.
D ← ∅;
DSWinD ← ∅;
while

∣∣D∣∣ < k do

for s ∈ D \D do

Gs ← 〈Win22, Act, ∆̂,DSWin{s} ∪ DSWinD〉;
DSWin{s}∪D ← Sure-Win(Gs); ... by Alg.1;

end

s∗ ← arg maxs∈D\D

∣∣∣DSWin{s}∪D

∣∣∣;
D ← s∗ ∪D;

end

return D
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Complexity Analysis The complexity of Alg. 2 is O(k|D|N) where N is the
number of state-action pairs in P1’s deceptive reachability game. This is because
to add (i+ 1)-th state to D, we update deceptive sure-winning regions of |D|− i
states. The complexity of solving a reachability game is linear in the size N of
the game, measured by the number of state-action pairs.

Example 2 (Part 5). We maximize |DSWinD|, under the constraint that a max-
imal two decoys to be placed within the set D = {j, k, l,m}. Following the com-
positional approach, we compute the following deceptive sure-winning regions:
DSWin{j} = {(j, 1), (f, 1)}, DSWin{k} = {(k, 1), (k, 2), (f, 1), (g, 2)}, DSWin{l} =
{(l, 0), (h, 0)} and DSWin{m} = {(m, 0), (i, 0), (e, 0)}.

First, we use the greedy algorithm for maximum set-cover to solve for D ⊆ D
that maximizes f∪(D) under the constraint |D| ≤ 2. In the first iteration, the
greedy algorithm selects the largest the state corresponding to |DSWin{s}|, which
is s = k. In the second iteration, it selects the set that has the largest number of
states not already included in DSWin{k}. Thus, it selects m as the second state
to place the decoy. In conclusion, it selects D = {k,m} as solution to decoy
allocation problem, for which |DSWin{k,m}| = 7.

Second, we use Alg. 2 to solve for D ⊆ D that maximizes f](D) under
the constraint |D| ≤ 2. In the first iteration, s∗ is selected to be k because
|DSWin{k}| is the largest. In the second iteration, s∗ is selected to be l be-
cause DSWin{l}∪D = {(l, 0), (h, 0), (k, 1), (k, 2), (f, 1), (g, 2), (c, 0), (d, 0)}. In con-

clusion, it selects D = {k, l} as solution to decoy allocation problem, for which
|DSWin{k,l}| = 8, which coincidentally in this example is also the globally op-
timal solution for the problem. We note the improvement in the solution is
attributed to incremental computation of DSWinD∪{s} in Alg. 2.

Due to space limitation, we omit other examples with larger game arena.
But the interested readers can find more examples in which the decoy allocation
problems are solved with both the greedy algorithm for submodular optimization
and Alg. 2 in https://github.com/abhibp1993/decoy-allocation-problem.

4 Conclusion

In this paper, we investigated the optimal decoy allocation problems in a class of
games where players’ objectives are specified in temporal logic and players have
asymmetric information. The contributions of the paper are twofold: First, we
develop a hypergame on graph model to capture the deceivee (the adversary)’s
incomplete and incorrect information due to the decoys and the deceiver (the
defender)’s information about the deceivee’s information. Using decoy-based de-
ception, we designed algorithms to compute a deceptive sure-winning strategy
with which the defender can take actions deceptively and lure the adversary
into decoys, from a state where the adversary perceives herself a winner (i.e.,
has a strategy to achieve the attack objective). Second, to compute the opti-
mal choice of decoy locations, we employed compositional synthesis from formal
methods and proved that the optimal decoy allocation problem is monotone,

https://github.com/abhibp1993/decoy-allocation-problem
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and non-decreasing. However, the problem can be submodular or supermodular
or neither in different games. We design two greedy algorithms, one is based
on maximizing an under-approximation of the deceptive winning regions given
the effectiveness of individual decoys using maximum set cover, another is to
use submodular-supermodular optimization to find approximate solutions of the
optimal decoy placement.

Future work include the study of decoy allocation with other types of decoy-
induced misperception. In this scope, the decoys are set up as “traps” for the
adversary. But it is possible to use decoys as “fake targets” for distracting the
adversary. We intend to explore a mixture of types of decoys given their function-
alities in cyber-physical defense and the respective deceptive synthesis problems
and decoy-allocation problems. Also, we are interested in deceptive planning for
other class of games, for example, concurrent(i.e., simultaneous-move) reacha-
bility games [1]. We intend to implement a toolbox for the proposed algorithm
and apply the methods to practical network security problems.
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